V_{RRM} = 1200 V Q_{C} = 454 nC $I_{F}(\le 85^{\circ}C)$ = 2 x 100 A V_{F} = 1.6 V

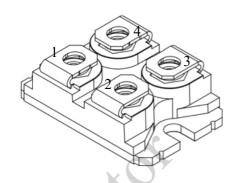
SiC SBD 13D12100SM 1200V SiC Schottky Diode

Features

- Ultra-Fast Switching
- Zero Reverse Recovery Current
- High-Frequency Operation
- Positive Temperature Coefficient on V_F
- High Surge Current
- 100% UIS tested

Benefits

- Improve System Efficiency
- Reduction of Heat Sink Requirement
- Essentially No Switching Losses
- Parallel Devices Without Thermal Runaway


Application

- Consumer SMPS
- Boost Diodes in PFC or DC/DC Stages
- AC/DC Converters

Order Information

Part Number	Package	Marking	
I3D12100SM	SOT-227	I3D12100SM	

Contents

Features	1
Benefits	1
Application	1
Order Information	1
Contents	2
1. Maximum Ratings	3
2. Thermal Characteristics	3
3. Electrical Characteristics	
4. Typical Performance	5
5. Package Outlines	6

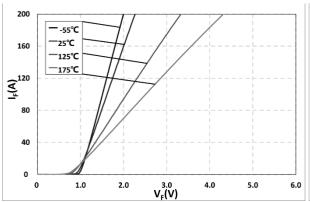
1. Maximum Ratings

At T_J= 25°C, unless specified otherwise (per Diode)

Parameter	Symbol	Value	Unit	Test condition
Repetitive Peak Reverse Voltage	V_{RRM}	1200	V	T _C = 25°C
Surge Peak Reverse Voltage	V_{RSM}	1200	V	T _C = 25°C
DC Blocking Voltage	V_R	1200	V	T _C = 25°C
Forward Current	I _F	150 120 100	A	$T_C = 25^{\circ}C$ $T_C = 65^{\circ}C$ $T_C = 85^{\circ}C$
Repetitive Peak Forward Surge Current	I _{FRM}	300	А	$T_C = 25^{\circ}\text{C}, t_p = 10\text{ms}$
Non-Repetitive Forward Surge Current	I _{FSM}	390	А	T _C = 25°C, t _p = 10ms
Power Dissipation	P _{tot}	450	W	T _C = 25°C
Operating Junction and Storage Temperature	T _J , T _{STG}	-55 to +175	°C	

2. Thermal Characteristics

Parameter	Symbol	Values	Unit
Thermal Resistance from Junction to Case	$R_{\theta JC}$	0.32	°C/W


3. Electrical Characteristics

At T_J= 25°C, unless specified otherwise (per Diode)

Down-wester.	Sumb al		Values		11	Tost soudition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition
Famuurd Valtaga	V	,	1.6	1.7	V	I _F = 100A, T _J = 25°C
Forward Voltage	V _F	/	2.5 /	V	I _F = 100A, T _J = 175°C	
Doverse Current	1	,	10	100	:	V _R = 1200V, T _J = 25°C
Reverse Current	I _R	/	100	/	μΑ	V _R = 1200V, T _J = 175°C
			4670			V _R = 1V, T _J = 25°C f= 1MHz
Total Capacitance	С	, 0	400	/	рF	V_R = 400V, T_J = 25°C f= 1MHz
			339			V _R = 800V, T _J = 25°C f= 1MHz
Total Capacitive Charge	Q_{c}	/	454	/	nC	V _R = 800V
Capacitance Stored Energy	E _C	/	110	/	μJ	V _R = 800V

4. Typical Performance

At T_J= 25°C, unless specified otherwise

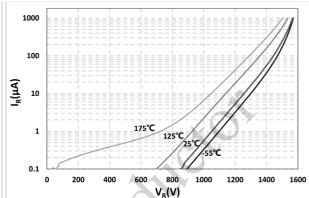
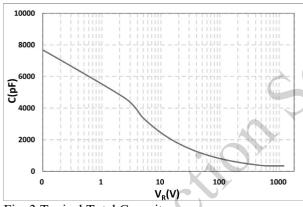



Fig. 1 Typical Forward Characteristics $I_F = f(V_F); T_J = -55$ °C, 25°C, 125°C, 175°C

Fig. 2 Reverse Characteristics $I_R=f(V_R)$; $T_J=-55^{\circ}C$, 25°C, 125°C, 175°C

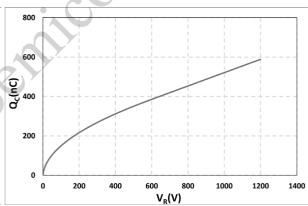
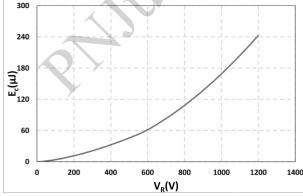



Fig. 3 Typical Total Capacitance C=f(V_R)

Fig. 4 Typical Total Capacitive Charge $Q_C = f(V_R)$

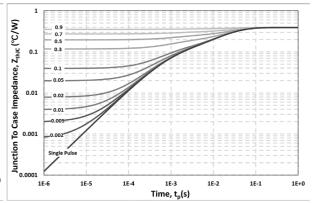
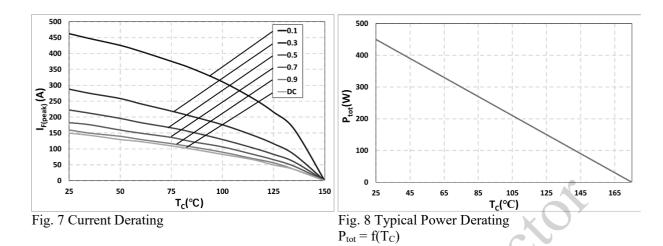
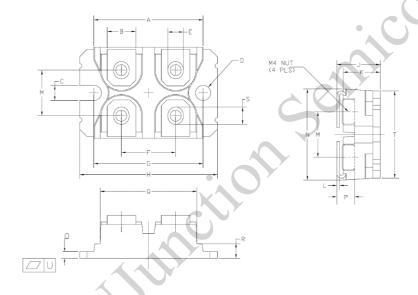




Fig. 5 Capacitance Stored Energy $E = f(V_i)$

Fig. 6 Transient Thermal Impedance

5. Package Outlines

SYMBOL	MIN	NOM.	MAX.
Α	31.50	31.69	31.88
В	7.80	8.00	8.20
С	4.09	4.19	4.29
D	4.09	4.19	4.29
E	4.09	4.19	4.29
F	14.91	15.01	15.11
G	30.12	30.21	30.30
н	38.00	38.11	38.23
J	11.68	11.95	12.22
K	8.92	9.26	9.60
L	0.76	0.80	0.84
М	12.60	12.73	12.85
N	25.15	25.29	25.42
0	2.00	2.06	2.13
P	4.95	5.46	5.97
Q	26.54	26.72	26.90
R	3.94	4.18	4.42
S	4.72	4.79	4.85
Т	24.59	24.83	25.07
U	-0.05	0.03	0.10

Drawing and Dimensions

Important Notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, PN Junction hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

PN Junction reserves the right to make changes at any time to any products or information herein, without notice. "Typical" parameters which may be provided in PN Junction data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of PN Junction in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest PN Junction office (www.pnjsemi.com).

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest PN Junction office.

Except as otherwise explicitly approved by PN Junction in a written document signed by authorized representatives of PN Junction, PN Junction's products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.